

ENVELOPPE ET REVETEMENTS

Baies et Vitrages

RAPPORT D'ETUDE THERMIQUE N° BV09-0483 CONCERNANT DES MENUISERIES PVC SERIE REPONSE PROFEX intercalaire aluminium et TGI Spacer

Ce rapport atteste uniquement des caractéristiques de l'objet étudié et ne préjuge pas des caractéristiques de produits similaires. Il ne constitue donc pas une certification de produits au sens de l'article L 115-27 du code de la consommation et de la loi du 3 juin 1994.

En cas d'émission du présent rapport par voie électronique et/ou sur support physique électronique, seul le rapport sous forme de support papier signé par le CSTB fait foi en cas de litige. Ce rapport sous forme de support papier est conservé au CSTB pendant une durée minimale de 10 ans.

La reproduction de ce rapport n'est autorisée que sous sa forme intégrale.

Il comporte 16 pages.

A LA DEMANDE DE: PROFEX

RUE DE VIMY62210 AVION

CENTRE SCIENTIFIQUE ET TECHNIQUE DU BATIMENT

SIÈGE SOCIAL > 84 AVENUE JEAN JAURÈS | CHAMPS-SUR-MARNE | 77447 MARNE-LA-VALLÉE CEDEX 2

TÉL. (33) 01 64 68 83 62 | FAX. (33) 01 64 68 85 36 | www.cstb.fr

MARNE-LA-VALLÉE | PARIS | GRENOBLE | NANTES | SOPHIA-ANTIPOLIS

OBJET

 \bullet L'objet est de calculer les coefficients de transmission thermique U_f de menuiserie et U_w de fenêtre et porte-fenêtre d'une part, les facteurs solaires S_w d'autre part.

Les profilés et les fichiers de calculs correspondants nous ont été transmis par la société PROFEX et sont reproduits en annexe à la fin de ce rapport.

Ce rapport ne traite que de la performance thermique des produits et ne préjuge en rien de leur aptitude à l'emploi.

TEXTES DE REFERENCE

• Le calcul du coefficient surfacique des fenêtres est effectué conformément aux règles d'application Th-Bât Th-U, (2006), fascicule « Parois Vitrées ».

IDENTIFICATION DU CORPS D'EPREUVE

	_, ,			
٠	Dénomi	ination	comme	rciale

PROFEX SERIE REPONSE

intercalaire aluminium et TGI Spacer

• Numéro d'enregistrement

• Date de l'étude

09MC057

19 Mars 2009

Fait à Marne-la-Vallée, le mardi 31 mars 2009

La responsable de l'étude

Maya CARDOSO

I-**DESCRIPTION SUCCINCTE**

Une description de l'ensemble des profilés est représentée en annexe pour les cas suivants :

SERIE REPONSE Profilés	ence des plans	Référe	Gamme
	Plan 1	Profilés	SERIE REPONSE

Tableau 1 : description des fenêtres et portes-fenêtres

METHODOLOGIE II-

II-1 Principe

Le calcul est réalisé par modélisation numérique en bidimensionnel et consiste à évaluer les flux de chaleur transmise à travers les fenêtres et les portes-fenêtres de l'ambiance intérieure vers l'extérieure et déterminer ensuite les coefficients de transmission thermique U.

II.2 Règles de calcul

Les coefficients Ug sont donnés dans des tableaux dans les règles Th-U et pour des vitrages doubles

Les valeurs des émissivités du vitrage et le taux de remplissage de l'argon sont à justifier conformément à la méthode de calcul donnée dans les règles Th-U.

II.3 Hypothèses

II.3.1 Géométrie

Dimensions (voir annexes):

Les dimensions conventionnelles retenues correspondent à des dimensions hors tout et sont données pour chaque cas dans le tableau suivant :

Menuiseries	Dimensions (LxH) en m
Fenêtre 2 vantaux	1,48 x 1,48
Porte-fenêtre 2 vantaux	1,48 x 2,18

Tableau 2 : dimensions conventionnelles pour fenêtres et porte-fenêtre

Matériaux 11.3.2

<u>Matériau</u>	Conductivité thermique W/(m.K)
 Joints en EPDM Verre Isolant PVC rigide PVC souple acier inox TGI Spacer polypropylène chargé en talc polysulfure tamis moléculaire 	0,25 1 0,035 0,17 0,14 25 0,193 0,40 0,10

II.3.3 Conditions aux limites

<u>Intérieur</u> <u>Extérieur</u>

 $R_{si} = 0.13 \text{ m}^2.\text{K/W}$ valeur normale, $R_{se} = 0.04 \text{ m}^2.\text{K/W}$

 R_{si} = 0,20 m².K/W valeur augmentée, T_i = 20°C. T_e = 0°C.

II.3.4 Résistance thermique additionnelle

Dans les tableaux de résultats de U_w et U_{jn} , la valeur de ΔR exprime la résistance thermique additionnelle en (m².K)/W apportée par l'ensemble fermeture et lame d'air ventilée. Des valeurs par défaut sont données dans les règles Th-U.

II.4 Formules

Calcul du coefficient Uw

Le calcul du coefficient U_w d'une fenêtre est réalisé selon la formule :

$$U_{w} = \frac{U_{s}A_{s} + U_{f}A_{f} + l_{s}\psi_{s}}{A_{s} + A_{f}}$$

avec

- U_a : coefficient surfacique de transmission thermique de la partie vitrée en W/(m².K),

- U_f : coefficient surfacique moyen de la menuiserie (ouvrant+dormant) en W/(m^2 .K) calculé selon la formule suivante :

$$U_{f} = \frac{\sum U_{f} A_{f}}{A_{f}}$$

 $-U_{\rm fi}$: coefficient surfacique du montant ou de la traverse numéro i W/(m².K) . Ces coefficients sont calculés par uine méthode numérique aux éléments finis. Les coupes des différents profilés correspondants sont données en annexes.

- A_{fi} : surface du montant ou de la traverse numéro i. La largeur des montants latéraux est supposée prolongée sur toute la hauteur de la fenêtre.

- ψ_g : coefficient de transmission thermique linéique en W/(m.K) dû à l'effet thermique entre le vitrage et la menuiserie,

- Aq: la plus petite surface de vitrage vue des deux côtés intérieur et extérieur de la paroi,

- Af: la plus grande surface de la menuiserie vue des deux côtés intérieur et extérieur de la paroi,

- la : le plus grand périmètre du vitrage vu des deux côtés intérieur et extérieur de la paroi.

Calcul du coefficient Sw

Le facteur solaire de la fenêtre (avec ou sans protection solaire) est calculé selon la formule suivante :

$$S_{w} = \frac{S_{g}A_{g} + S_{f}A_{f}}{A_{g} + A_{f}} \times F$$

avec:

Sw : facteur solaire de la fenêtre

- Sg: facteur solaire du vitrage (avec ou sans protection solaire) déterminé selon les règles
 Th-S
- Sf: facteur solaire moyen de la menuiserie

$$S_{f} = \frac{\alpha U_{f}}{h_{.}}$$

- α : coefficient d'absorption de la menuiserie selon la couleur (voir tableau 3)
- h_e : coefficient d'échange superficiel, h_e = 25 W/(m^2 .K)
- U_f : coefficient surfacique moyen de la menuiserie en $W/(m^2.K)$

oNB: pour obtenir le facteur solaire dans les conditions d'été,

$$h_{e \text{ été}} = 13,5 \text{ W/(m}^2.\text{K}) \text{ et } \frac{1}{U_{fit}} = \frac{1}{U_{fitor}} + 0,029$$

$$S_{fid} = \frac{\alpha U_{fid}}{h_{elid}} = \frac{\alpha}{(\frac{1}{Uf} + 0.029).h_{elid}}$$

- A_g : la surface (en m^2) de vitrage la plus petite vue des deux côtés intérieur et extérieur
- A_f: la surface (en m²) de la menuiserie la plus grande vue des deux côtés intérieur et extérieur
- F: le facteur multiplicatif:
 - o Pour une fenêtre au nu intérieur F = 0,9
 - o Pour une fenêtre au nu extérieur F = 1
- σ : le rapport de la surface de vitrage à la surface de la fenêtre

$$\sigma = \frac{A_s}{A_s + A_f}$$

Coefficient d'absorption selon la couleur de la menuiserie :

	Couleur	Valeur forfaitaire de $lpha$ *
Claire	Blanc, jaune, orange, rouge clair	0,4
Moyenne	Rouge sombre, vert clair, bleu clair	0,6
Sombre	Brun, vert sombre, bleu vif	0,8
Noire	Noir, brun sombre, bleu sombre	1,0

Tableau 3 : coefficient d'absorption selon la couleur de la menuiserie

^{*} ou valeur mesurée avec un minimum de 0,4.

II.5 Valeurs calculées du coefficient $\psi_{\mathbf{g}}$ d'intercalaire

Des valeurs calculées du coefficient de transmission thermique linéique ψ_g dû à l'effet thermique entre le vitrage et le profilé, sont données dans le tableau suivant (règles Th-U) :

U _q W/(m ² .K)	1,0	1,1	1,2	1,4	1,6	1,8	2,0	2,7
$\Psi_{g} W/(m.K)$	0,075	0,074	0,073	0,071	0,069	0,066	0,064	0,054
intercalaire aluminium								
$\Psi_{\mathbf{g}}$ W/(m.K) intercalaire TGI Spacer	0,044	0,044	0,043	0,042	0,041	0,040	0,039	0,034

Tableau 4 : valeurs calculées du coefficient ψ g

III RESULTATS

III.1 Coefficients Uf de transmission thermique des éléments de menuiserie

Fenêtre et porte-fenêtre à frappe PVC PROFEX SERIE REPONSE

Gamme	Profilé	Largeur de l'élément (m)	U _{fi} élément W/(m².K)
SERIE REPONSE	Montant latéral, traverse haute et traverse basse	0,110	1,5
	Montant central 1 renfort fenêtre	0,138	1,6
	Montant central 1 renfort porte- fenêtre	0,138	1,6

Tableau 5 : Ufi des éléments de menuiserie

III.2 Coefficients de transmission thermique $U_{w_{\ell}}$ U_{jn} et facteur solaire S_{w} Fenêtre et porte-fenêtre à frappe PVC SERIE REPONSE PROFEX

Coefficient U _g du vitrage en partie courante W/(m².K)	Coefficient U _w de fenêtre nue W/(m².K)		thern	U_{jn} (W/(m ² .K) pour une résistance thermique complémentaire $\Delta R^{(*)}$ (m ² .K/W) de :			
	Intercalaire aluminium	Intercalaire	L),15	_	19	
	aluminium	TOX Spacer	Intercalaire aluminium	Intercalaire TGI Spacer	Intercalaire aluminium	Intercalaire TGI Spacer	
Fenêtre 2 vantaux	Référe	nce dorma	nt : 7000	1	U _f =1,5W/((m².K)	
$LxH = 1,48 \text{ m} \times 1,48 \text{ m}$	Référe	nce ouvrai	ոt ։ 7205+	7202+2213	$3 A_q = 1,413$	37 m ²	
·					$A_f = 0.776$	57 m²	
					$I_0 = 7,284$	m	
1,0 **	1,4	1,3	1,3	1,2	1,3	1,2	
1,1	1,5	1,4	1,4	1,3	1,3	1,3	
1,2	1,5	1,4	1,4	1,3	1,3	1,3	
1,4	1,7	1,6	1,5	1,4	1,5	1,4	
1,6	1,8	1,7	1,6	1,5	1,6	1,5	
1,8	1,9	1,8	1,7	1,6	1,6	1,6	
2,0	2,0	2,0	1,8	1,8	1,7	1,7	
2,7	2,5	2,4	2,2	2,1	2,1	2,0	
Porte-fenêtre 2 vantaux	Référer	ice dormai	nt : 7000		U _f =1,5W/	(m².K)	
$LxH = 1,48 \text{ m} \times 2,18 \text{ m}$	Référer	ice ouvran	t:7205+7	7202+2213			
					$A_f = 1,02$		
					$I_g = 10,08$		
1,0 **	1,4	1,3	1,3	1,2	1,3	1,2	
1,1	1,5	1,4	1,4	1,3	1,3	1,3	
1,2	1,5	1,4	1,4	1,3	1,3	1,3	
1,4	1,7	1,6	1,5	1,4	1,5	1,4	
1,6	1,8	1,7	1,6	1,5	1,6	1,5	
1,8	1,9	1,8	1,7	1,6	1,6	1,6	
2,0	2,0	2,0	1,8	1,8	1,7	1,7	
2,7	2,5	2,4	2,2	2,1	2,1	2,0	
Utilisation	uniquement o	dans les cas	où la RT 2	. 005 ne s'ap	plique pas.		
(*) ΔR est la résistance thermique comple ventilée, telle					ctérieure-lai	ne d'air	

1,0 ** : valable pour du triple vitrage

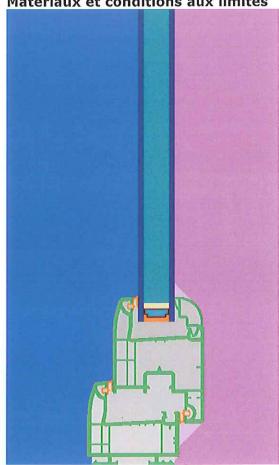
Tableau 6: coefficients thermiques

U _f menuiserie	S _g facteur solaire du	S _w condition	s hiver valeur fo		elon couleur
W/(m².K)	vitrage seul (Sg=0,9xg) ou avec protection solaire éventuelle	0,4	menu 0,6	0,8	1
		Réf. Doi Réf. Ouvrant	LxH = 1,48 m x rmant : 7000 : 7205+7202+22 =0,65		
	0,1	0,07	0,07	0,07	0,08
	0,2	0,12	0,13	0,13	0,14
	0,3	0,18	0,19	0,19	0,19
1,5	0,4	0,24	0,24	0,25	0,25
	0,5	0,30	0,30	0,31	0,31
	0,6	0,36	0,36	0,36	0,37
	0,7	0,41	0,42	0,42	0,43
	Porte	Réf. Doi Réf. Ouvrant	ux LxH = 1,48 n rmant : 7000 : 7205+7202+22 =0,68	edi Aredania (
	0,1	0,07	0,07	0,08	0,08
	0,2	0,13	0,13	0,14	0,14
20 200 25 1	0,3	0,19	0,19	0,20	0,20
1 [0,4	0,25	0,26	0,26	0,26
1,5		Transit Salatina	0.00	0,32	0.22
1,5	0,5	0,31	0,32		0,32
1,5		0,31 0,37 0,44	0,32 0,38 0,44	0,38 0,44	0,32

Tableau 7 : facteur solaire

III.3 Détails de calculs

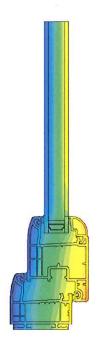
Résistance superficielle extérieure type B du Th-U


Résistance superficielle intérieure normale type C du Th-U

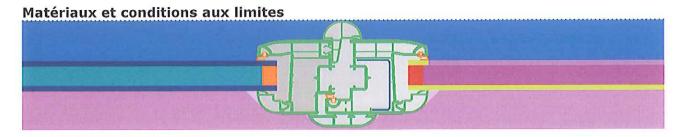
Résistance superficielle intérieure augmentée type D du Th-U

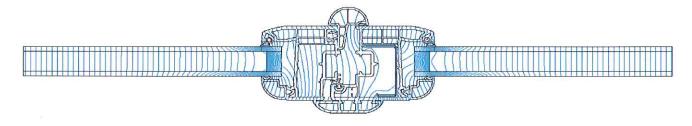
III.3.1 Montant latéral, traverses haute et basse

Matériaux et conditions aux limites

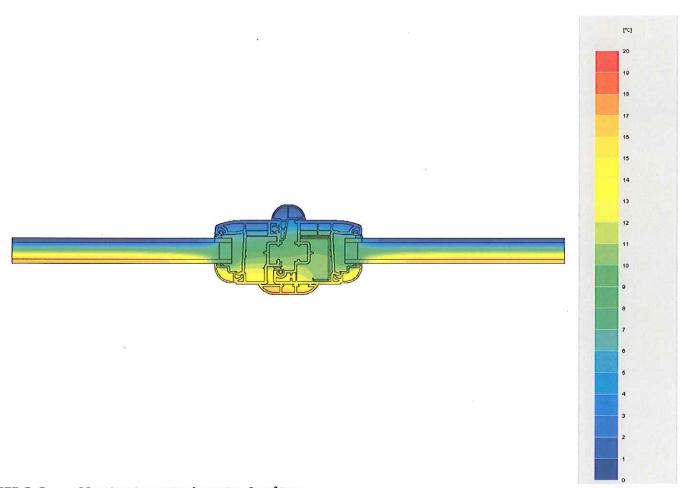


Lignes de flux


Iso-températures

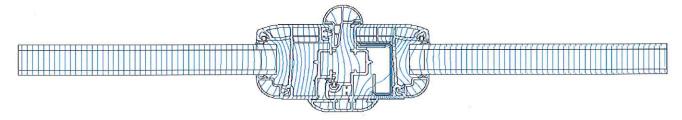


III.3.2 Montant central fenêtre

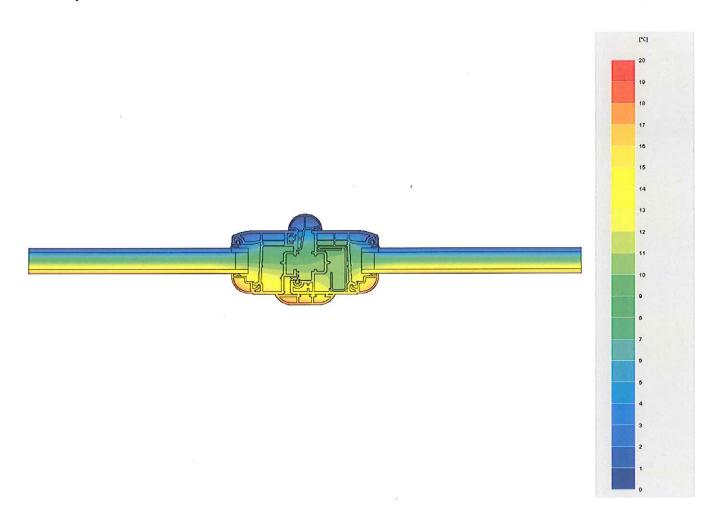


Lignes de flux

Iso-températures

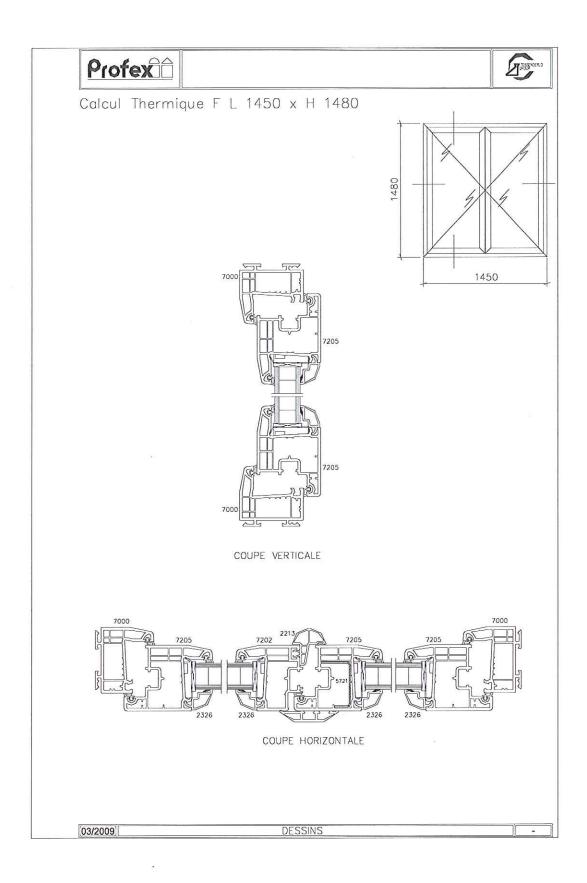


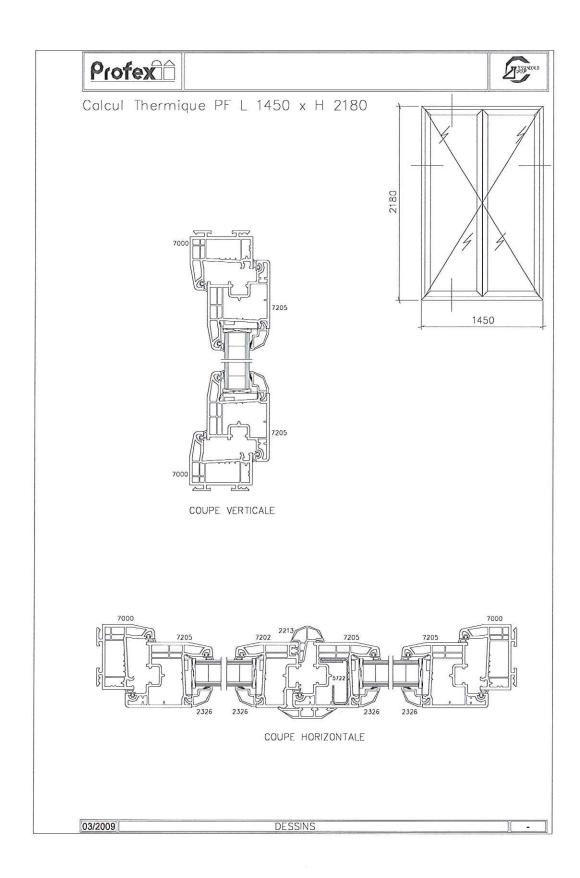
III.3.3 Montant central porte-fenêtre


Matériaux et conditions aux limites

Lignes de flux

Iso-températures




ANNEXES

Plan 1

FIN DE RAPPORT